Chapter 9 STOICHIOMETRY

Section 9.1: Introduction to Stoichiometry

- Stoichiometry: the calculation of quantities in chemical equations
- > From Greek:
 - □ "Stoikheion" = element
 - \Box "Metron" = to measure
- > It's the bookkeeping of chemistry!

There are two types of Stoichiometry

Composition Stoichiometry

The mass relationships of elements in compounds

NaCl and H₃PO₄

Reaction Stoichiometry

The mass relationships of reactants and products in a chemical reaction $2 H_2 + O_2 \rightarrow 2H_2O$

Chemical Equations

All balanced equations are always based on the units of the <u>mole</u> $N_2 + 3 H_2 \rightarrow 2 NH_3$

Translated: 1 mol N₂ + 3 mol H₂ \rightarrow 2 mol NH₃

- 1 glass of bottled water (8 oz.)
- 4 lemons
- ¹/₄ cup sugar
- 4 ice cubes

Squeeze lemons into water. Add sugar to lemon water. Add ice cubes. Stir. Makes one glass of lemonade.

1 glass of water (8 oz.) 4 lemons ¹/₄ cup sugar 4 ice cubes

Squeeze lemons into water. Add sugar to lemon water. Add ice cubes. Stir. How many glasses of lemonade can you make if you have 20 lemons, 10 cups sugar and an unlimited amount of water and ice cubes?

- 1 glass of water (8 oz.) 4 lemons ¹/₄ cup sugar 4 ice cubes
- Squeeze lemons into water. Add sugar to lemon water. Add ice cubes. Stir.
- Will there be any leftover ingredients (not including the water or ice cubes)?
- > How much will be left over?

- 1 glass of water (8 oz.) 4 lemons ¹/₄ cup sugar 4 ice cubes
- Squeeze lemons into water. Add sugar to lemon water. Add ice cubes. Stir.

How many glasses of lemonade can you make if you have 20 lemons, 10 cups sugar and an unlimited amount of water and ice cubes? 5 cups of lemonade **Excess reagent:**

Mole Ratio

> The mole ratio is a conversion factor that relates the number of moles of any two substances involved in a chemical reaction. > The information comes directly from the balanced chemical equation for the reaction.

Five Types of Reaction Stoichiometry Problems

Section 9.2: Stoichiometric Calculations

Types of Equations

- 1. Mole-Mole
- 2. Mole-Mass, Mass-Mole
- 3. Mass-Mass
- 4. Volume-Volume
- 5. Particle-Particle
- 6. Mixed Problems

1. Mole-Mole Problems

moles of $A \rightarrow \text{moles } B$

MOLE RATIO

MOLES	MOLE	MOLES
OF A	RATIO	OF B
A	B A	B

2. Mole-Mass Problems

moles of $A \rightarrow \text{mass } B$

Mole to Mass Problems

moles	MOLE	moles	grams
of A	RATIO	of B	of B
\rightarrow	\rightarrow	\rightarrow	\rightarrow

2. Mass-Mole Problems

mass of $A \rightarrow \text{mole } B$

Mass to Mole Problems

grams	moles	MOLE	moles
of A	of A	RATIO	of B
\rightarrow	\rightarrow	\rightarrow	\rightarrow

3. Mass-Mass Problems

$mass \: A \to moles \: A \to moles \: B \to mass \: B$

Mass to Mass Problems

grams	moles	MOLE	moles	grams
of A	of A	RATIO	of B	of B
\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow

4. Volume-Volume Problems

volume A \rightarrow moles A \rightarrow moles B \rightarrow volume B

Volume - Volume Problems

volume	moles	MOLE	moles	volume
of A	of A	RATIO	of B	of B
\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow

5. Particle-Particle Problems

particles $A \rightarrow \text{ moles } A \rightarrow \text{moles } B \rightarrow \text{particles } B$

Particle - Particle Problems

particles	moles of	MOLE	moles of	particles
of A	A	RATIO	B	of B
\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow

6. Mixed-Mole Problems

 $? unit A \rightarrow moles A \rightarrow moles B \rightarrow ?unit B$

Mixed Problems

? unit	moles	MOLE	moles	? unit
of A	of A	RATIO	of B	of B
\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow

Grilled cheese sandwich

3 slices cheese 2 slices bread Excess butter

Assemble sandwich. Grill in lots of melted butter.

How many grilled cheese sandwiches can you make if you have a package of 24 slices of cheese and a loaf of bread with 30 slices? Is anything left over?

How much?

Sect. 9.3: Limiting Reagent

- Limiting Reagent: the reactant that limits the amount of products made
 Gets completely used up in a reaction
- Excess Reagent: the reactant that is not used up completely
 - □ There is more then enough leftover